Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Proc Biol Sci ; 291(2021): 20240339, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38654649

Birdsongs are among the most distinctive animal signals. Their evolution is thought to be shaped simultaneously by habitat structure and by the constraints of morphology. Habitat structure affects song transmission and detectability, thus influencing song (the acoustic adaptation hypothesis), while body size and beak size and shape necessarily constrain song characteristics (the morphological constraint hypothesis). Yet, support for the acoustic adaptation and morphological constraint hypotheses remains equivocal, and their simultaneous examination is infrequent. Using a phenotypically diverse Australasian bird clade, the honeyeaters (Aves: Meliphagidae), we compile a dataset consisting of song, environmental, and morphological variables for 163 species and jointly examine predictions of these two hypotheses. Overall, we find that body size constrains song frequency and pace in honeyeaters. Although habitat type and environmental temperature influence aspects of song, that influence is indirect, likely via effects of environmental variation on body size, with some evidence that elevation constrains the evolution of song peak frequency. Our results demonstrate that morphology has an overwhelming influence on birdsong, in support of the morphological constraint hypothesis, with the environment playing a secondary role generally via body size rather than habitat structure. These results suggest that changing body size (a consequence of both global effects such as climate change and local effects such as habitat transformation) will substantially influence the nature of birdsong.


Body Size , Vocalization, Animal , Animals , Songbirds/physiology , Songbirds/anatomy & histology , Ecosystem , Biological Evolution
2.
Brain ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38456468

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics, and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals: the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%), and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%), and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%), and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P=0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%); motor delay with non-ambulance (64%); and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P=0.003), non-ambulance (P=0.035), ongoing enteral feeds (P<0.001), and cortical visual impairment (P=0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs; provide insights into their neurological basis; and, vitally, enable meaningful genetic counselling for affected individuals and their families.

3.
Genet Med ; 26(2): 101029, 2024 Feb.
Article En | MEDLINE | ID: mdl-37982373

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Genetic Testing , Genetic Variation , Humans , Alleles , Databases, Genetic
4.
Hum Mol Genet ; 32(22): 3123-3134, 2023 11 03.
Article En | MEDLINE | ID: mdl-37166351

Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.


Chromatin , Neurodevelopmental Disorders , Humans , Chromatin/genetics , DNA Methylation/genetics , Mutation , Neurodevelopmental Disorders/genetics , Genetic Association Studies , Codon
5.
medRxiv ; 2023 Apr 03.
Article En | MEDLINE | ID: mdl-37066232

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.

6.
Nat Commun ; 14(1): 853, 2023 02 15.
Article En | MEDLINE | ID: mdl-36792598

Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1-2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)-that could be quantified in semen for paternal cases (recurrence risks of 5.6-12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling.


Fathers , Parturition , Male , Pregnancy , Female , Humans , Child , Mutation , Risk Assessment , Germ Cells , Mosaicism , Pedigree , Germ-Line Mutation
7.
Neurology ; 99(14): e1511-e1526, 2022 10 04.
Article En | MEDLINE | ID: mdl-36192182

BACKGROUND AND OBJECTIVES: ATP1A3 is associated with a broad spectrum of predominantly neurologic disorders, which continues to expand beyond the initially defined phenotypes of alternating hemiplegia of childhood, rapid-onset dystonia parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndrome. This phenotypic variability makes it challenging to assess the pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurologic disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. METHODS: Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders study with additional cases contributed by collaborators internationally. Detailed clinical data were collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term "ATP1A3" from 2004 to 2021. RESULTS: Twenty-four individuals with a previously undiagnosed neurologic phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurologic features were common including microcephaly (7; 29%), ataxia (13; 54%), dystonia (10; 42%), and hypotonia (7; 29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied, and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1,108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. Combined Annotation-Dependent Depletion (CADD) scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within 6 regions of constraint. DISCUSSION: Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment and evaluating the CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone.


Cerebellar Ataxia , Dystonic Disorders , Cerebellar Ataxia/genetics , Dystonic Disorders/genetics , Hemiplegia/genetics , Humans , Mutation/genetics , Phenotype , Sodium-Potassium-Exchanging ATPase/genetics
8.
BMC Ecol Evol ; 22(1): 86, 2022 06 29.
Article En | MEDLINE | ID: mdl-35768772

BACKGROUND: Darwin and others proposed that a species' geographic range size positively influences speciation likelihood, with the relationship potentially dependent on the mode of speciation and other contributing factors, including geographic setting and species traits. Several alternative proposals for the influence of range size on speciation rate have also been made (e.g. negative or a unimodal relationship with speciation). To examine Darwin's proposal, we use a range of phylogenetic comparative methods, focusing on a large Australasian bird clade, the honeyeaters (Aves: Meliphagidae). RESULTS: We consider the influence of range size, shape, and position (latitudinal and longitudinal midpoints, island or continental species), and consider two traits known to influence range size: dispersal ability and body size. Applying several analytical approaches, including phylogenetic Bayesian path analysis, spatiophylogenetic models, and state-dependent speciation and extinction models, we find support for both the positive relationship between range size and speciation rate and the influence of mode of speciation. CONCLUSIONS: Honeyeater speciation rate differs considerably between islands and the continental setting across the clade's distribution, with range size contributing positively in the continental setting, while dispersal ability influences speciation regardless of setting. These outcomes support Darwin's original proposal for a positive relationship between range size and speciation likelihood, while extending the evidence for the contribution of dispersal ability to speciation.


Coleoptera , Passeriformes , Animals , Bayes Theorem , Body Size , Phylogeny
9.
Br J Cancer ; 126(9): 1339-1345, 2022 05.
Article En | MEDLINE | ID: mdl-35184155

BACKGROUND: Von Hippel-Lindau (VHL) disease is an inherited tumour predisposition syndrome and a paradigm for the importance of early diagnosis and surveillance. However, there is limited information on the "real world" management of VHL disease. METHODS: A national audit of VHL disease in the United Kingdom. RESULTS: VHL disease was managed mostly via specialist clinics coordinated through regional clinical genetics services (but frequently involving additional specialties). Over the study period, 19 genetic centres saw 842 individuals (393 males, 449 females) with a clinical and/or molecular diagnosis of VHL disease and 74 individuals (35 male, 39 female) with a prior risk of 50% (affected parent). All centres offered retinal, central nervous system and abdominal surveillance to affected individuals and at-risk relatives though surveillance details differed between centres (but complied with international recommendations). Renal lesions detected on the first surveillance scan were, on average, larger than those detected during subsequent scans and the larger the diameter at detection the greater the likelihood of early intervention. CONCLUSIONS: In a state-funded health care system individuals with a rare inherited cancer predisposition syndrome are generally able to access appropriate surveillance and patient management is improved compared to historical data. The "real world" data from this study will inform the future development of VHL management protocols.


Neoplasms , von Hippel-Lindau Disease , Female , Genotype , Humans , Male , State Medicine , United Kingdom/epidemiology , Von Hippel-Lindau Tumor Suppressor Protein/genetics , von Hippel-Lindau Disease/genetics
10.
Hum Mutat ; 43(4): 487-498, 2022 04.
Article En | MEDLINE | ID: mdl-35077597

A proper interaction between muscle-derived collagen XXV and its motor neuron-derived receptors protein tyrosine phosphatases σ and δ (PTP σ/δ) is indispensable for intramuscular motor innervation. Despite this, thus far, pathogenic recessive variants in the COL25A1 gene had only been detected in a few patients with isolated ocular congenital cranial dysinnervation disorders. Here we describe five patients from three unrelated families with recessive missense and splice site COL25A1 variants presenting with a recognizable phenotype characterized by arthrogryposis multiplex congenita with or without an ocular congenital cranial dysinnervation disorder phenotype. The clinical features of the older patients remained stable over time, without central nervous system involvement. This study extends the phenotypic and genotypic spectrum of COL25A1 related conditions, and further adds to our knowledge of the complex process of intramuscular motor innervation. Our observations indicate a role for collagen XXV in regulating the appropriate innervation not only of extraocular muscles, but also of bulbar, axial, and limb muscles in the human.


Arthrogryposis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Face , Humans , Muscle, Skeletal , Mutation , Phenotype
11.
Pediatr Nephrol ; 37(1): 21-35, 2022 01.
Article En | MEDLINE | ID: mdl-33675412

Rapid technological advances in genomic testing continue to increase our understanding of the genetic basis of a wide range of kidney disorders. Establishing a molecular diagnosis benefits the individual by bringing an end to what is often a protracted diagnostic odyssey, facilitates accurate reproductive counselling for families and, in the future, is likely to lead to the delivery of more targeted management and surveillance regimens. The selection of the most appropriate testing modality requires an understanding both of the technologies available and of the genetic architecture and heterogeneity of kidney disease. Whilst we are witnessing a far greater diagnostic yield with broader genetic testing, such approaches invariably generate variants of uncertain significance and secondary incidental findings, which are not only difficult to interpret but present ethical challenges with reporting and feeding back to patients and their families. Here, we review the spectrum of nephrogenetic disorders, consider the optimal approach to genetic testing, explore the clinical utility of obtaining a molecular diagnosis, reflect on the challenges of variant interpretation and look to the future of this dynamic field.


Genomics , Kidney Diseases , Genetic Testing , Humans , Kidney Diseases/diagnosis , Kidney Diseases/genetics
13.
Eur J Hum Genet ; 29(10): 1536-1541, 2021 10.
Article En | MEDLINE | ID: mdl-34285383

We report a patient with profound congenital hypotonia, central hypoventilation, poor visual behaviour with retinal hypopigmentation, and significantly decreased mitochondrial respiratory chain complex I activity in muscle, who died at 7 months of age having made minimal developmental progress. Biallelic predicted truncating P4HTM variants were identified following trio whole-genome sequencing, consistent with a diagnosis of hypotonia, hypoventilation, intellectual disability, dysautonomia, epilepsy and eye abnormalities (HIDEA) syndrome. Very few patients with HIDEA syndrome have been reported previously and mitochondrial abnormalities were observed in three of four previous cases who had a muscle biopsy, suggesting the possibility that HIDEA syndrome represents a primary mitochondrial disorder. P4HTM encodes a transmembrane prolyl 4-hydroxylase with putative targets including hypoxia inducible factors, RNA polymerase II and activating transcription factor 4, which has been implicated in the integrated stress response observed in cell and animal models of mitochondrial disease, and may explain the mitochondrial dysfunction observed in HIDEA syndrome.


Electron Transport Complex I/deficiency , Epilepsy/genetics , Eye Abnormalities/genetics , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Prolyl Hydroxylases/genetics , Electron Transport Complex I/metabolism , Epilepsy/pathology , Eye Abnormalities/pathology , Humans , Infant , Intellectual Disability/pathology , Male , Muscle Hypotonia/pathology , Mutation , Syndrome
14.
J Evol Biol ; 33(12): 1758-1769, 2020 12.
Article En | MEDLINE | ID: mdl-33047407

Parasitism is often invoked as a factor explaining the variation in diversification rates across the tree of life, while also representing up to half of Earth's diversity. Yet, patterns and processes of parasite diversification remain mostly unknown. In this study, we assess the patterns of parasite diversification and specifically determine the role of life-history traits (i.e. life cycle complexity and host range) and major coevolutionary events in driving diversification across eight phylogenetic datasets spanning taxonomically different parasite groups. Aware of the degree of incomplete sampling among all parasite phylogenies, we also tested the impact of sampling bias on estimates of diversification. We show that the patterns and rates of parasite diversification differ among taxa according to life cycle complexity and to some extent major host transitions. Only directly transmitted parasites were found to be influenced by an effect of major host transitions on diversification rates. Although parasitism may be a main factor responsible for heterogeneity in diversification among the tree of life, the high degree of incomplete parasite phylogenies remains an obstacle when modelling diversification dynamics. Nevertheless, we provide the first comparative test of parasite diversification, revealing some consistent patterns and insight into the processes that shape it.


Biological Evolution , Parasites/genetics , Animals , Host Specificity
15.
Clin Genet ; 98(2): 191-197, 2020 08.
Article En | MEDLINE | ID: mdl-32530092

Structural eye disorders are increasingly recognised as having a genetic basis, although current genetic testing is limited in its success. De novo missense variants in WDR37 are a recently described cause of a multisystemic syndromic disorder featuring ocular coloboma. This study characterises the phenotypic spectrum of this disorder and reports 2 de novo heterozygous variants (p.Thr115Ile, p.Ser119Tyr) in three unrelated Caucasian individuals. All had a clinical phenotype consisting of bilateral iris and retinal coloboma, developmental delay and additional, variable multisystem features. The variants fall within a highly conserved region upstream of the WD-repeat domains, within an apparent mutation cluster. Consistent with the literature, intellectual disability, structural eye disorders, epilepsy, congenital heart disease, genitorenal anomalies and dysmorphic facial features were observed. In addition, a broader developmental profile is reported with a more specific musculoskeletal phenotype described in association with the novel variant (p.Thr115Ile). We further expand the phenotypic spectrum of WDR37-related disorders to include those with milder developmental delay and strengthen the association of ocular coloboma and musculoskeletal features. We promote the inclusion of WDR37 on gene panels for intellectual disability, epilepsy and structural eye disorders.


Coloboma/genetics , Eye Diseases/genetics , Intellectual Disability/genetics , Musculoskeletal Abnormalities/genetics , Nuclear Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Coloboma/complications , Coloboma/pathology , Epilepsy/complications , Epilepsy/genetics , Epilepsy/pathology , Eye Diseases/complications , Eye Diseases/pathology , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Musculoskeletal Abnormalities/complications , Musculoskeletal Abnormalities/pathology , Mutation/genetics , Mutation, Missense/genetics , Phenotype , Young Adult
16.
Parasitology ; 146(11): 1361-1370, 2019 09.
Article En | MEDLINE | ID: mdl-31142396

New technological methods, such as rapidly developing molecular approaches, often provide new tools for scientific advances. However, these new tools are often not utilized equally across different research areas, possibly leading to disparities in progress between these areas. Here, we use empirical evidence from the scientific literature to test for potential discrepancies in the use of genetic tools to study parasitic vs non-parasitic organisms across three distinguishable molecular periods, the allozyme, nucleotide and genomics periods. Publications on parasites constitute only a fraction (<5%) of the total research output across all molecular periods and are dominated by medically relevant parasites (especially protists), particularly during the early phase of each period. Our analysis suggests an increasing complexity of topics and research questions being addressed with the development of more sophisticated molecular tools, with the research focus between the periods shifting from predominantly species discovery to broader theory-focused questions. We conclude that both new and older molecular methods offer powerful tools for research on parasites, including their diverse roles in ecosystems and their relevance as human pathogens. While older methods, such as barcoding approaches, will continue to feature in the molecular toolbox of parasitologists for years to come, we encourage parasitologists to be more responsive to new approaches that provide the tools to address broader questions.


Genetic Techniques/instrumentation , Molecular Biology/methods , Parasitology/methods , Molecular Biology/instrumentation , Parasitology/instrumentation
17.
Mol Ecol ; 28(13): 3141-3150, 2019 07.
Article En | MEDLINE | ID: mdl-31038802

Alpine ecosystems are frequently characterized by an abundance of wing-reduced insect species, but the drivers of this biodiversity remain poorly understood. Insect wing reduction in these environments has variously been attributed to altitude, temperature, isolation, habitat stability or decreased habitat size. We used fine-scale ecotypic and genomic analyses, along with broad-scale distributional analyses of ecotypes, to unravel the ecological drivers of wing reduction in the wing-dimorphic stonefly Zelandoperla fenestrata complex. Altitudinal transects within populations revealed dramatic wing reduction over very fine spatial scales, tightly linked to the alpine treeline. Broad biogeographical analyses confirm that the treeline has a much stronger effect on these ecotype distributions than altitude per se. Molecular analyses revealed parallel genomic divergence between vestigial-winged (high altitude) and full-winged (low altitude) ecotypes across distinct streams. These data thus highlight the role of the alpine treeline as a key driver of rapid speciation, providing a new model for ecological diversification along exposure gradients.


Ecotype , Genetic Speciation , Neoptera/anatomy & histology , Neoptera/genetics , Wings, Animal/anatomy & histology , Altitude , Animals , Genetics, Population , Models, Genetic , New Zealand , Rivers
18.
Int J Parasitol ; 49(6): 429-435, 2019 05.
Article En | MEDLINE | ID: mdl-30797772

The use of genetic information is now fundamental in parasite taxonomy and systematics, for resolving parasite phylogenies, discovering cryptic species, and elucidating patterns of gene flow among parasite populations. The accumulation of available gene sequences per geographical area or per parasite taxonomic group is likely proportional to species richness, but not without some biases. Certain areas and certain taxonomic groups receive more research effort than others, possibly causing a deficit in the relative number of parasite species being characterized genetically in some areas or taxonomic groups. Here, we use data on the number of parasite records per country or helminth family from the London Natural History Museum host-parasite database, and matching data on the number of gene sequences available from the National Center for Biotechnology Information (NCBI) GenBank database, to determine how available gene sequences scale with species richness across countries or parasitic helminth families. Our quantitative analysis identified countries/regions of the world and helminth families that have received the most effort in genetic research. More importantly, it allowed us to generate lists (based on residuals from the statistical model) of the 20 countries/regions and the 20 helminth families with the largest deficit in available gene sequences relative to their helminth species richness. We propose these lists as useful guides toward future allocation of effort to maximise advances in parasite biodiscovery, systematics and population structure.


Databases, Factual , Helminths/genetics , Acanthocephala/classification , Acanthocephala/genetics , Animals , Cestoda/classification , Cestoda/genetics , Databases, Nucleic Acid , Electron Transport Complex IV/genetics , Genetic Markers , Helminths/classification , Host-Parasite Interactions/genetics , Nematoda/classification , Nematoda/genetics , Phylogeny , Phylogeography , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Trematoda/classification , Trematoda/genetics
20.
Stud Health Technol Inform ; 122: 1007, 2006.
Article En | MEDLINE | ID: mdl-17102517

2005 has seen the birth of the product KIWIN(TM)--an educational technology for nursing students in New Zealand involving web-based technology supported by Pocket PCs in the field. Nursing students use the technology to collect clinically relevant data at the point-of-care and transmit to a secure central server for storage using cradle synchronisation, WiFi or cellular wireless modalities. Later retrieval via the Internet enables collation of details, refinement of work, and construction with print-off of care reports to meet academic requirements. This demonstration will showcase the development to the international community. Critique and review will be welcomed.


Education, Nursing , Internet , Humans , New Zealand , Patient Care Planning , Point-of-Care Systems
...